Вооружения 
17 февраля 2021

Роботы. От идеи до воплощения

Благодаря реализация стратегии роботизации Вооруженных Сил Российской Федерации стало возможным выполнение широкого круга задач.

МихаилСидоров
МихаилМокляковНачальник отдела Центрального научно-исследовательского испытательного института инженерных войск, кандидат технических наук

История XX века тесно связана c научно-технической революцией, результаты которой позволили советскому народу одержать победу в Великой Отечественной войне, запустить первый искусственный спутник Земли, выйти человеку в открытый космос и создать мощнейшее государство в мире.

Формирование молодого государства характеризовалось появлением новых вызовов и угроз, и перед научным сообществом была поставлена задача повышения обороноспособности страны путем проведения передовых научноисследовательских работ.

Одним из перспективных направлений военно-научных исследований стало создание телеуправляемых боевых машин – первых робототехнических комплексов военного назначения.

Танк Т-26, на базе которого был создан телетанк ТТ-26. Танк Т-26, на базе которого был создан телетанк ТТ-26.
Танк Т-26, на базе которого был создан телетанк ТТ-26.

Технологический прорыв в создании телетанков не имел аналогов в мире и был, по своей сути, революционным техническим решением.

Результатом данных исследований стало создание двух батальонов с телеуправляемыми танками, которые приняли боевое крещение в Советско-финляндской войне 1939 года.

Аналогичные технологии применялись в боях за оборону Севастополя в 1941 году, где впервые успешно применены дистанционно управляемые «сухопутные торпеды» против долговременных огневых точек (ДОТ) противника.

После окончания Великой Отечественной войны технологии робототехники получили интенсивное развитие при исследованиях космоса. В 1957 году на околоземную орбиту был выведен первый космический робот «Спутник-1». В 50-х годах советским ученым с помощью автоматических спутников впервые удалось сфотографировать обратную сторону Луны. В 60-70-х годах в СССР запущены первые автоматические межпланетные станции на Луну, Венеру и Марс.

Первая межпланетная грунтовая автономная станция «Луноход-1». Первая межпланетная грунтовая автономная станция «Луноход-1».
Первая межпланетная грунтовая автономная станция «Луноход-1».

Особую гордость вызывает создание отечественной наукой первого в мире робототехнического комплекса – планетохода «Луноход-1», успешно выполнившего миссию по исследованию спутника Земли. В послевоенный период Советский Союз уверенно занимал лидирующие позиции в области робототехники.

Суровым испытанием для советских конструкторов робототехники стала авария на Чернобыльской атомной электростанции в 1986 году, где роботы использовались для зачистки крыши над 4-м энергоблоком.

Дорогостоящий и современный на то время немецкий робототехнический комплекс РТК «Джокер» не смог проработать и 20 минут в условиях сильной радиации, местами достигавшей значения более 30 Зв/ч, его электроника быстро вышла из строя.

Здесь пригодились передовые наработки отечественной космической отрасли. На базе космических грунтовых автономных станций «Луноход-1» и «Луноход-2» в кратчайшие сроки разработан специальный телеуправляемый робот СТР-1. Вертолетом его доставили на крышу объекта, где он выполнил все основные работы на опасных участках.

В дальнейшем для расчистки прилегающих к станции загрязненных территорий применялся роботизированный комплекс «Клин-1», за 44 дня разработанный на базе инженерной техники с участием сотрудников 15-го ЦНИИИ имени Д.М. Карбышева и ВНИИ «Трансмаш».

В состав комплекса входил сам робот, созданный на базе инженерной машины разграждения ИМР-2 и машины управления – бронированной ремонтно-эвакуационной машины БРЭМ-1, защита которой снижала воздействие радиации на экипаж в 8500 раз.

Подготовка РТК «Джокер» для работы на крыше над 4-м энергоблоком ЧАЭС. Подготовка РТК «Джокер» для работы на крыше над 4-м энергоблоком ЧАЭС.
Подготовка РТК «Джокер» для работы на крыше над 4-м энергоблоком ЧАЭС.

Авария на Чернобыльской АЭС дала толчок развитию отечественной робототехнике, способной работать в экстремальных условиях. Наибольшее развитие робототехника получила в сферах, где требовалось защитить жизнь и здоровье человека. Когда условия, в которых приходится работать, становятся по-настоящему опасными и выдержать их способна не всякая техника.

Последующий распад Советского Союза привел к тяжелой экономической ситуации, что поставило на грань вымирания всю некогда процветавшую научную отрасль. В условиях бесконечной череды банкротств критически важных наукоемких производств о дальнейшем развитии робототехники речи уже не шло.

На фоне происходивших в стране деструктивных процессов во всех сферах жизнедеятельности, включая тяжелую химическую и атомную промышленность, значительно возросло количество чрезвычайных ситуаций и аварий техногенного характера.

РТК СТР-1 на зачистке крыши машинного зала 4-го энергоблока ЧАЭС. РТК СТР-1 на зачистке крыши машинного зала 4-го энергоблока ЧАЭС.
РТК СТР-1 на зачистке крыши машинного зала 4-го энергоблока ЧАЭС.

Дистанционно управляемая машина, созданная на базе ИМР-2 из состава комплекса «Клин-1». Дистанционно управляемая машина, созданная на базе ИМР-2 из состава комплекса «Клин-1».
Дистанционно управляемая машина, созданная на базе ИМР-2 из состава комплекса «Клин-1».

В сложившейся тяжелейшей обстановке руководством Российской Федерации было принято решение о создании Министерства Российской Федерации по делам гражданской обороны, чрезвычайных ситуаций и ликвидации последствий стихийных бедствий (МЧС России). Руководителем ведомства назначен С.К. Шойгу, известный своими организаторскими способностями и нестандартным подходом к решению важных государственных задач.

Главой МЧС России было принято решение, с одной стороны, максимально повысить эффективность работ, выполняемых в экстремальных условиях, с другой – сохранить жизнь и здоровье подчиненных, что без привлечения робототехнических комплексов было недостижимо.

В 1994 году решением С.К. Шойгу сформирован Центр «Лидер», который в дальнейшем неоднократно выполнял задачи с применением современных роботов.

Уникальная операция, связанная с риском для жизни, была проведена в ходе ликвидации последствий техногенной аварии в Арзамасе-16, ныне город Саров, где 17 июня 1997 г. в лаборатории Всероссийского научно-исследовательского института экспериментальной физики (ВНИИЭФ) ошибочные действия оператора на одном из объектов привели к возникновению самоподдерживающейся цепной реакции. Сотрудник института, проводивший работы в лаборатории, от полученной высокой дозы радиации скончался.

Доклад о текущей обстановке министру МЧС России С.К. Шойгу (ВНИИЭФ г. Арзамас-16). Доклад о текущей обстановке министру МЧС России С.К. Шойгу (ВНИИЭФ г. Арзамас-16).
Доклад о текущей обстановке министру МЧС России С.К. Шойгу (ВНИИЭФ г. Арзамас-16).

Для ликвидации последствий аварии под руководством С.К. Шойгу срочно была сформирована специальная комиссия, в состав которой вошли специалисты МЧС России (Центр «Лидер»), ФСБ России, ВНИИЭФ и МГТУ имени Н.Э. Баумана с ООО «СКТБ ПР».

На первом этапе использовался немецкий робот MF-4, предназначенный для работ на ядерных объектах, но из-за сильного нейтронного излучения он вышел из строя. Затем практически все операции по ликвидации аварии выполнялись с помощью отечественного робота МРК-25, разработанного ООО «СКТБ ПР» совместно с МГТУ имени Н.Э. Баумана, на котором доработали защиту.

Эффективное применение многофункционального робототехнического комплекса обеспечило успешное выполнение работ по ликвидации последствий техногенной аварии, которая была устранена в течение недели. В настоящее время лаборатория ВНИИЭФ полностью восстановлена и продолжает функционировать в полном объеме.

Применение роботов в сложной экстремальной ситуации позволило сохранить жизнь и здоровье ликвидаторов аварии. При этом конструкторские наработки, заложенные в МРК-25, легли в основу создания специальных роботов подобного типа МРК «Варан» и «Кобра-1600», которые применяются в настоящее время силовыми структурами.

В 2012 году с приходом С.К. Шойгу на пост главы Минобороны России работа по созданию и применению специальной робототехники в интересах обороноспособности государства была выведена на принципиально новый уровень.

Благодаря реализация стратегии роботизации Вооруженных Сил Российской Федерации стало возможным выполнение широкого круга задач, связанных с ведением разведки, поражением противника, разминированием местности и ликвидации последствий чрезвычайных ситуаций.

Применение БПЛА в Сирии для корректировки высокоточных артиллерийских снарядов «Краснополь» при уничтожении техники и укрепленных объектов боевиков. Применение БПЛА в Сирии для корректировки высокоточных артиллерийских снарядов «Краснополь» при уничтожении техники и укрепленных объектов боевиков.
Применение БПЛА в Сирии для корректировки высокоточных артиллерийских снарядов «Краснополь» при уничтожении техники и укрепленных объектов боевиков.

При этом  создаваемые по заказу Минобороны России комплексы с беспилотными летательными аппаратами планируется использовать не только в интересах обороны и безопасности государства, но и для социально-экономического развития страны (в сферах транспорта и сельского хозяйства).

В морской среде широко используются автономные необитаемые подводные аппараты. Например, глубоководный комплекс «Витязь-Д» ВМФ России, который в 2020 году успешно выполнил погружение на дно Марианской впадины.

Комплекс необитаемых подводных аппаратов «Клавесин-1Р» используется в исследовательских и разведывательных целях. Может снимать и картографировать дно, искать затонувшие объекты. Неоднократно применялся в поисковоспасательных операциях.

Успешно выполняет задачи пожаротушения участков местности и объектов робототехнический комплекс «Уран-14».

5 августа 2019 г. на складе хранения артиллерийских боеприпасов в поселке Каменка Ачинского района произошло возгорание с последующими взрывами. На место пожара экстренно перебросили два робототехнических комплекса «Уран-14», и 6 августа пожар был ликвидирован.

Аналогичная ситуация сложилась 7 октября 2020 г. на складе с артиллерийскими боеприпасами под Рязанью, где с участием робототехнических комплексов пожаротушения «Уран-14» и разминирования «Уран-6» удалось в кратчайшие сроки ликвидировать чрезвычайную ситуацию.

Комплекс для глубоководных подводных исследований «Витязь-Д». Комплекс для глубоководных подводных исследований «Витязь-Д».
Комплекс для глубоководных подводных исследований «Витязь-Д».

Комплекс «Клавесин-1Р». Комплекс «Клавесин-1Р».
Комплекс «Клавесин-1Р».

Робот «Уран-6» успешно выполнял задачи по разминированию и сплошной очистке местности от взрывоопасных предметов в Чеченской Республике, в том числе в горах на высоте 1600 метров над уровнем моря. При этом к месту выполнения задач комплекс доставлялся транспортным вертолетом Ми-26.

На территории Сирийской Арабской Республики «Уран-6» применялся для сплошного разминирования местности и объектов исторической части Пальмиры, городов Алеппо и Дейр-эз-Зор, где комплексом разминирована территория общей площадью более 50 гектаров.

В настоящее время комплекс «Уран-6» в составе сводного отряда инженерных войск эффективно выполняет гуманитарную миссию по разминированию местности на территории Нагорного Карабаха и по своей технической производительности заменяет тяжелый труд целого взвода саперов.

Многофункциональный робототехнический комплекс пожаротушения «Уран-14» при тушении очага возгорания. Многофункциональный робототехнический комплекс пожаротушения «Уран-14» при тушении очага возгорания.
Многофункциональный робототехнический комплекс пожаротушения «Уран-14» при тушении очага возгорания.

Применение комплекса «Уран-6» позволяет в 2 раза увеличить эффективность разминирования местности и объектов.

Подводя итог представленного аналитического обзора, необходимо отметить, что высокая динамика развития технологий в области робототехники и искусственного интеллекта уже сейчас позволяет успешно создавать и применять робототехнические комплексы для решения широкого перечня задач, в том числе в военном деле. Робототехнические комплексы с элементами искусственного интеллекта заменяют не только физический, но и умственный труд человека, связанный с обработкой больших массивов данных и принятием решений на их основе.

Сплошное разминирование местности комплексом «Уран-6» в Сирийской Арабской Республике. Сплошное разминирование местности комплексом «Уран-6» в Сирийской Арабской Республике.
Сплошное разминирование местности комплексом «Уран-6» в Сирийской Арабской Республике.

Выгрузка комплекса «Уран-6» для разминирования дороги в Нагорном Карабахе. Выгрузка комплекса «Уран-6» для разминирования дороги в Нагорном Карабахе.
Выгрузка комплекса «Уран-6» для разминирования дороги в Нагорном Карабахе.

В ближайшем будущем на перспективное развитие робототехники решающее значение окажет всеобщая цифровизация, активное внедрение нейросетей и производство высокотехнологичных материалов. Все это приведет к созданию многофункциональных унифицированных платформ, которые значительно расширят тактико-технические характеристики и оперативные возможности робототехнических комплексов.