Пожарная безопасность изоляционных материалов бортовой электрической сети
ООО «Камский кабель» — крупнейший в России производитель кабельно-проводниковой продукции

Для изготовления бортовой сети многоцелевого истребителя применяется более 100 км проводов и кабелей общим весом до 300 кг. Доля полимерных электроизоляционных материалов от общего веса проводов и кабелей составляет более 50%.

Начиная с 70-х годов XX века в зарубежной практике авиастроения, а затем и в современной России, все более широкое применение стали находить электроизоляционные материалы на основе полиимида и соединений фтора: поливинилиденфторид, политетрафторэтилена, сополимер тетрафторэтилена с этиленом.

Существенным фактором, определяющим применение полимерных материалов, является их пожарная опасность, обусловленная горючестью и сопутствующими процессами. Пожарная опасность материалов и изделий из них определяется в технике следующими характеристиками: 1) горючестью; 2) дымовыделением при горении и воздействии пламени; 3) токсичностью продуктов горения и пиролиза. Рассмотрим более детально характеристики для каждого изоляционного материала.

Исследованиями установлено, что скорость разложения фторполимеров зависит только от температуры, а количество летучих продуктов пиролиза – от температуры и времени пиролиза. Политетрафторэтилен: средняя скорость разложения при температуре 400°С составляет 0,0012% массы в минуту; состав летучих компонентов: 97% тетрафторэтилен и 3% гексафторпропилен. Сополимер тетрафторэтилена с этиленом: средняя скорость разложения при температуре 320°С составляет 0,135% массы в минуту; состав летучих компонентов: 88% винилиденфторид и 12% фтористый водород. Поливинилиденфторид: средняя скорость разложения при температуре 320°С составляет 0,16% массы в минуту; основную часть летучих продуктов деструкции составляет фтористый водород. Полиимид: средняя скорость разложения при температуре 400°С составляет 0,0017% массы в минуту. При деструкции образуется углекислый газ.

МКЭО 26-14 2х0,20 ТУ 16-705.375-85. Конструкция: токопроводящие жилы из медных проволок, покрытых серебром (1), изоляция из пленки СКЛФ-4Д (2), изоляция из пленки ПМФ-С-352 (3), экран из медных проволок, покрытых серебром (4), защитная оболочка из пленок Ф-4ЭН (5) и СКЛФ-4Д (6). Диаметр – 2,38 мм, вес – 11,17 кг/км.

Наиболее быстрое и сильное токсическое воздействие на человека оказывает фтористый водород, летальный исход может наступить в течение 1 минуты нагревания или горения 1 кг сополимера тетрафторэтилена с этиленом или поливинилиденфторида, в то время как для политетрафторэтилена и полиимида – более чем 10 минут.

Для определения возможности человеку ориентироваться в пространстве при наступлении чрезвычайной ситуации нам потребуются результаты испытаний на дымообразование при горении или тлении. Первые испытания проводов бортовых с изоляцией из сополимера тетрафторэтилена с этиленом были проведены в 1989 году в США. При продолжительности испытания 20 минут значение светопроницаемости составило от 10,5% до 77,5%.

В 2013 году, впервые в отечественной практике, испытательным центром кабельной продукции ПНИПУ (г. Пермь) был испытан провод бортовой марки МК 26-11 2,5 ТУ 16.705.375-85 с комбинированной изоляцией из политетрафторэтилена и полиимида производства завода «Камкабель». При продолжительности испытания в 37 минут минимальное зарегистрированное значение светопроницаемости составило 98,1%.

При светопроницаемости от 0 до 60% человек теряет способность ориентироваться в пространстве. Таким образом, продукты горения сополимера тетрафторэтилена с этиленом могут препятствовать работе экипажа и эвакуации в критической ситуации.

При разработке конструкции проводов для обеспечения пожарной безопасности принято руководствоваться значением кислородного индекса электроизоляционного полимера. Кислородный индекс политетрафторэтилена – более 95%, полиимида – более 50%, сополимера тетрафторэтилена с этиленом – 31% (при модификации и с антипиренами – 40%).

Существуют несколько методик для проверки проводов бортовых на нераспространение горения. Традиционный метод испытаний не в полной мере может воспроизвести чрезвычайную ситуацию. Поэтому было предложено провести дополнительные испытания бортовых проводов и определить придел распространения горения пучком проводов. Испытаниям подвергся провод марки МК 26-11 2,5 ТУ 16-705.375-85 с комбинированной изоляцией из политетрафторэтилена и полиимида производства завода «Камкабель». Отрезки длинной 3,5 м. в количестве 3501 шт. были уложены на вертикальной лестнице в 30 слоев. Продолжительность испытания составила 40 минут, период времени до прекращения горения или тления составил 0 сек, длина обугленной или поврежденной пламенем части образцов 0,6 м. Для проводов с изоляцией из полимера с кислородным индексом 30% значение периода времени до прекращения горения или тления составляет 12 мин, длина обугленной или поврежденной пламенем части образцов составляет 1,4 м.

По совокупности характеристик наиболее безопасными материалами являются полиимид и политетрафторэтилен. Так почему в зарубежной практике авиастроения, а затем и в современной России, стали применять провода с изоляцией из сополимера тетрафторэтилена с этиленом? Ответ предлагаем искать в технологиях наложения изоляции. Сополимер тетрафторэтилена с этиленом перерабатывается способом экструзии в одну стадию, и скорость изолирования составляет 200-600 м/мин. Изготовление изоляции из политетрафторэтилена или полиимида происходит в две стадии при скорости в 6-10 м/мин. Очевидно, что при низкой производительности изготовители проводов не в состоянии в полной мере обеспечивать растущий спрос со стороны авиационных концернов. В итоге, единственным способом снизить неблагоприятное воздействие на человека при чрезвычайной ситуации продуктов горения является ограничение массы и объема сополимера тетрафторэтилена с этиленом.

Для обеспечения надежности бортовой электрической сети принято изготавливать изоляцию провода из двух и более слоев, при этом радиальная толщина изоляции составляет 0,20 или 0,25 мм. В зарубежной практике существует допущение, по которым бортовыми проводами считаются провода с однослойной изоляцией из сополимера тетрафторэтилена с этиленом радиальной толщиной не менее 0,13 мм. Данные допущения снижают массу и объем полимера в конструкции провода в 2 раза, а заодно надежность и ресурс. В итоге, на провода с однослойной изоляцией из сополимера тетрафторэтилена с этиленом не распространяется требование на устойчивость к воздействию электрической дуги, а электрическая прочность изоляции составляет 3,0 кВ. Для сравнения, провод бортовой марки МК 26-11 производства завода «Камкабель» имеет изоляцию из шести слоев общей радиальной толщиной 0,20 мм, материал изоляции способен выдерживать воздействие электрической дуги в течение 250 с (ГОСТ 14906-77), электрическая прочность изоляции составляет не менее 20 кВ.

Существует так же еще одна особенность у сополимера тетрафторэтилена с этиленом, обусловленная способом его переработки. Формирование изоляционного слоя в проводах типа SPEC 55PC, БС 35-121 и БС 35-1298 происходит методом экструзии из расплава полимера, после чего изоляция охлаждается и в изоляции остается механическое напряжение. При повторном нагреве срабатывает «эффект памяти» полимера и изоляция дает продольную усадку: при неизменной длине токопроводящей жилы длина изоляции становиться меньше. Если продольная усадка изоляции происходит у провода в жгуте, то образуется кольцевой разрыв изоляции с появлением участка оголенной токопроводящей жилы размером до 3 мм; либо токопроводящая жила под изоляцией образует петлю.

В отечественной практике авиастроения бортовая электрическая сеть многоцелевых истребителей изготавливается из проводов с изоляцией из полиимида. При исключительных показателях электрических и механических свойств полиимид обладает существенным недостатком – водопоглощением. Средний показатель влагопоглощения для полиимида составляет 2,8% от веса полимера, при этом отмечается снижение электрических и механических свойств. Для защиты полиимида от воздействия влаги провода бортовые типа БИФ и БИФМ имеют верхнее покрытие толщиной 0,01 мм из сополимера тетрафторэтилена с гексафторпропиленом (FEP). При монтаже и эксплуатации такого провода достаточно велика вероятность повреждения и разрушения покрытия за счет трения проводов между собой или об экранирующие металлические элементы. Беспрепятственное поглощение полиимидом влаги разрушает целостность изоляции и приводит к преждевременному выходу из эксплуатации авиационной техники.

Для того чтобы снизить влияние влаги на полиимид в проводах типа МК 26-11, МКЭ 26-11 и МКЭО 26-13 изоляция изготавливается из комбинации политетрафторэтилена и полиимида. Внутренняя и наружная поверхность изоляции выполнена из политетрафторэтилена, толщина каждого слоя минимум 0,05 мм, водопоглощение составляет 0,00%.

Сегодня лидером отечественной кабельной отрасли заводом «Камкабель» серийно изготавливаются бортовые провода МК и МКЭО, превосходящие по безопасности и надежности зарубежные провода, способные обеспечить снижение веса бортовой электрической сети. Качество каждой партии проводов подтверждается приемкой военного представительства МО РФ.

ООО «Камский Кабель»

г. Пермь, ул. Гайвинская, 105

8-800-220-5000 – единая справочная служба, для абонентов РФ звонок бесплатный

kamkabel@kamkabel.ru

www.kamkabel.ru

Александр Александрович АЗАНОВ – заместитель главного технолога ООО «Камский кабель»

Владимир Александрович ЗАКАМСКИХ – начальник группы «Авиастроение» ООО «Камский кабель»


 

НОВОСТИ

На государственном испытательном космодроме «Плесецк» 30 марта проведены очередные бросковые испытания новой жидкостной межконтинентальной баллистической ракеты тяжелого класса «Сармат».
Авиационный комплекс имени С.В. Ильюшина (ПАО «Ил») обсуждает c Минобороны России возможность глубокой модернизации бортового радиоэлектронного оборудования (БРЭО) на всем парке тяжелых военно-транспортных самолетов (ВТС) Ан-124 «Руслан» ВКС РФ, сообщил РИА «Новости» вице-президент Объединенной авиастроительной корпорации по транспортной авиации, гендиректор ПАО «Ил» Алексей Рогозин.
Военнослужащие зенитной ракетной части 11-й Краснознаменной армии Восточного военного округа (ВВО) получили на вооружение новую зенитную ракетную систему С-400.
В ходе итогового заседания Государственной комиссии по двигателю АЛ-41Ф-1 ПАО «ОДК-УМПО» был торжественно вручен акт о завершении Государственных стендовых испытаний опытного двигателя.
На вооружение мотострелкового соединения общевойсковой армии Восточного военного округа (ВВО), дислоцированного в Амурской области, поступил мобильный комплекс радиоэлектронной борьбы «Житель» (Р-330Ж).
Министерство обороны России намерено закупить более 100 легких транспортных самолетов Ил-112В, заявил замглавы военного ведомства Юрий Борисов в ходе посещения Воронежского акционерного самолетостроительного общества (ВАСО).
В рамках реализации программы перевооружения войск Южного военного округа (ЮВО) мотострелковое соединение 58-й общевойсковой армии, дислоцированное в Дагестане, получило первую партию боевых машин пехоты БМП-3 нового выпуска.
Конструкторское бюро «ВР-Технологии» холдинга «Вертолеты России» приступило к стендовым испытаниям основных систем и агрегатов беспилотного вертолета VRT300. Летные испытания аппарата должны начаться в конце 2018 г.
На полигоне Сары-Шаган (Республика Казахстан) боевым расчетом войск противовоздушной и противоракетной обороны ВКС РФ 31 марта успешно проведен очередной испытательный пуск новой модернизированной ракеты российской системы противоракетной обороны (ПРО).
Порядок управления войсками в ходе непрерывного огневого поражения объектов и живой силы условного противника был отработан в ходе трехдневной командно-штабной тренировки (КШТ), проведенной под руководством командующего войсками Южного военного округа (ЮВО) генерал-полковника Александра Дворникова. В ней были задействованы управления штаба округа и подчиненных объединений, командный состав соединений ЮВО, 4 тыс. военнослужащих и около 1 тыс. единиц военной техники.

 

 

 

 

 

 

 

Учредитель и издатель: ООО «Издательский дом «Национальная оборона»

Адрес редакции: 109147, Москва, ул. Воронцовская, д. 35Б, стр. 2, офис 636

Для писем: 123104, Москва, а/я 16

Свидетельство о регистрации: Эл № ФС 77-22322 от 17.11.2005

 

 

 

Дизайн и разработка сайта - Группа «Оборона.Ру»

Техническая поддержка - Группа Компаний КОНСТАНТА

Управление сайтом - Система управления контентом (CMS) InfoDesignerWeb

 

Rambler's Top100